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Abstract 

Reinforcement Learning Methods (RLMs) typ- 
ically select candidate solutions stochastically 
based on a credibility space of hypotheses 
which the RLM maintains, either implicitly or 
explicitly. RLMs typically have both inductive 
and deductive aspects: they inductively 
improve their credibility space on a stage-by 
stage basis; they deductively select an appro- 
priate response to incoming stimuli using their 
credibility space. In this sense, RLMs share 
some learning attributes in common with 
active, incremental concept learners. Unlike 

i some concept learners that employ determinis- 
i tic procedures for selecting hypotheses, how- 

- i ever, the evaluations of hypotheses provided to 
% - RLMs are often uncertain, either due to noisy 
'■: | environments, or due to summary evaluations 
::! [ which occur after a sequence of learner-envi- 
:: [ ronment interactions.  This paper examines 
>>; | issues of inductive learning bias in this context 
l\ | experimentally.     Specifically,     the     paper 
1}! addresses inductive learning biases in the con- 
B ! text of a simple RLM called a Collective 
§ | Learning Automaton (CLA). The CLA learns 

1 the shortest path through a small network. The 
I research points out some of the difficulties of 
) finding performance measures that indicate the 

strongest, correct biases for the automaton. 

1      INTRODUCTION 

Over the past few years, there has been a growing interest 
in the effects of bias in learning algorithms. In inductive 
concept learning, Mitchell considers bias to be the 
expressed preference of the learner for considering one 
hypothesis of a classification rule (or a generalization rule) 

over another (Mitchell, 1980). Mitchell points out that "an 
unbiased learning system's ability to classify new 
instances is no better man if it simply stored all the train- 
ing instances and performed a table lookup when asked to 
classify a subsequent instance" (Mitchell, 1980, pp. 1). 
Bias, as defined in this sense, is necessary for any induc- 
tive learning algorithm. 
Within concept learning algorithms there are two funda- 
mental types of bias: language bias and procedural bias 
(Utgoff, 1986; Rendell, 1986; Gordon, 1990).2 Language 
biases are preferences which determine the expression of 
hypotheses of the target concept. Procedural biases are 
preferences which affect the traversing of the search space. 
Procedural biases also include halting rules. Both lan- 
guage biases and procedural biases can affect a learning 
algorithm's speed for finding a classification rule that is 
close to the target concept. The language bias reduces the 
size of the search space by constraining the number of pos- 
sible formulations of the hypothesis; the procedural bias 
reduces the amount of traversal through the search space 
by constraining the search method. 

Closely associated with notion of inductive bias are the 
notions of strength and correctness (Utgoff, 1986). To 
date, the definition of strength refers more to language bias 
than procedural bias. The strength of a language bias cor- 
responds to the entire size of the hypothesis space that the 
learner can generate given no constraining procedural bias 
(e.g., exhaustive search with labeled instances). The 
strength of the language bias can be increased either by 
reducing the size of the representational space or by trans- 
forming the grammar to one that is less expressive. Not all 
hypotheses that may be generated from a language 
description may be acceptable hypotheses of the target 
concept, however. Language biases that permit the forma- 

1 Procedural bias is also called algorithmic bias. 
2 The biases within the problem space may be different from those within 
the algorithm. For example, instances examined by the learner may be 
expressed in a language which is much richer than the learner's language. 
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tion of hypotheses that do describe the target concept are 
called correct biases. 
In a general sense, procedural bias constrains the breadth, 
the direction, and the duration of the search for the classifi- 
cation rule. A strong procedural bias minimizes this trajec- 
tory through the search space. An incorrect procedural 
bias over-constrains or under-constrains this search so that 
learner cannot find a correct classification rule. A powerful 
concept learner is one that uses as strong a bias as possi- 
ble, for both its language and procedural biases, without 
sacrificing correctness. 

Since many learning algorithms have an inductive compo- 
nent, the analysis of learning in terms of language and pro- 
cedural bias applies broadly to many algorithms other than 
traditional concept learners. For example, a large number 
of active incremental learners, which are generally not 
considered to be traditional concept learners employ what 
is referred to as Reinforcement Learning Methods 
(RLMs) (Whitehead and Ballard, 1990). RLMs have an 
inductive component in that they constantly revise the 
credibilities of their hypotheses based on experience. 
These learners then deduce a response from an input stim- 
ulus based on their current hypothesis or set of hypotheses. 
RLMs are often used to learn first-order decision 
sequences in dynamical systems. Such algorithms include 
genetic algorithm-based systems (Holland, 1975, De Jong, 
1975) such as Grefenstette's SAMUEL (Grefenstette, 
1988), Artificial Neural Networks (ANNs) (Rumelhart, 
1986) such as those consisting of Widrow's ADALINE 
units (Widrow, 1985), and Q-Learners (Watkins, 1989). 
This paper, in particular, examines a simple example of a 
RLM called a Collective Learning Automaton (CLA) 
(Bock 1992). 
Viewing RLMs as having both inductive and deductive 
components is supported by other researchers, including 
those studying learning automata (Narendra and Thatha- 
char, 1989) and those working in information theoretics as 
applied to inductive and deductive inference (e.g., see 
Watanabe, 1960). Furthermore, these researchers believe 
that both forms of inference are necessary for learning: 
"Inductive and deductive inference do not contradict but 
merely complement each other and both are found to be 
essential for learning processes" (Narendra and Thatha- 
char, 1989, pp. 15). Watanabe states: "Inductive inference 
contains, as a necessary ingredient, a constant comparison 
of the deductive consequence from a hypothesis with the 
experiment. Accordingly, the model theory of inductive 
inference must permit deductive inference to play a corre- 
sponding role within its framework" (Watanabe, 1960, pp. 
208). 

3 In the PAC learning framework (Valiant, 1984), hypotheses describe 
the target concept within limits of accuracy specified as part of the proce- 
dural bias). 

A RLM is similar to an active incremental concept learner 
that is inferring a single concept. The purpose of the con- 
cept learner is to find a final hypothesis sufficiently close 
to the target hypothesis that covers the positive instances 
the learner has observed. The purpose of a typical RLM is 
to seek one solution (or a few) to a decision sequence 
problem. In the latter case, the final hypothesis covers only 
a small fraction of the possible sequences. If the space 
being covered is very small and the instances being 
received only have the label of "positive" or "negative," 
then any inference procedure, deductive or inductive, 
would probably do no better than random search. Instead, 
RLMs usually receive evaluations which measure, in a 
sense, the "degree of positiveness," (or better, the "degree 
of credibility") of an entire solution (or trial hypothesis) 
which can be thought of as a group of instances. A simple 
analogous problem for a concept learner would be to gen- 
erate the set of positive instances covered by its current 
hypothesis for evaluation. A summary score might indi- 
cate the actual fraction of positive instances in the set. A 
difference between the concept learner and the RLM in 
this case is that the RLM examines a sequential relation- 
ship among the decisions it generates whereas the concept 
learner applies a "same member of type of relationship. 

In the RLM, each individual decision is not directly evalu- 
ated as "good" or "bad." The problem for the RLM then 
becomes one of inferring what makes up the constituent 
parts of the best solution (decisions in the final hypothesis) 
from summary evaluations of trial hypotheses, rather than 
trying to infer a final hypothesis through the direct evalua- 
tion of constituent members which are labelled as "posi- 
tive" or "negative" instances. This inference problem of 
finding out the constituent parts of the best solution is 
commonly referred to as the credit assignment problem. 

There are basically two approaches for studying biases in 
learning systems. One approach is to maintain a set of 
biases while the learner performs a task, and then before 
attempting the task again, search for a better set based on 
the learner's overall performance. The other approach is to 
dynamically adjust a set of biases during the learning task 
based on intermediate evaluations of performance. This 
paper calls the first approach inherited bias (or fixed 
bias). The second approach is referred to in the literature 
as dynamic bias adjustment (or shift of bias) (Gordon, 
1990; Rendell, 1987; Schlimmer, 1987; Utgoff, 1982, 
1986). Both of these approaches have biological analogs, ■> 
For example, the range of frequencies that a creature can; 
hear is usually a genetically determined trait that does not 
improve due to learning over the creature's life-span. Not ification 
all characteristics fit this category, however. A creature __ 
having a fairly long life-span must be able to dynamically 
adjust its initial biases in order to adapt itself to changing 
circumstances. For example, biases appropriate to one 
stage of development, may be inappropriate at another. So 
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we can think of the dynamic shifting of bias as analogous 
to bias changes that occur during various stages of individ- 
ual development. 
Since of the primary objective of this research is to exam- 
ine the effects of learning biases, and their interactions, on 
the performance of a RLM, this study focuses on examin- 
ing the effects of inherited biases. Being able to compare 
the effect of making one biasing assumption over another 
is possible when the combination of selected biases 
remains constant over a learning task. Using dynamic bias 
adjustment involves additional issues. One major issue 
that needs to be addressed is how to modify the state of the 
learner so that it can continue to learn with a new set of 
biases. This issue is complicated by the fact that most 
RLMs do not maintain an episodic memory of their expe- 
riences, whereas many concept learners save instance 
information so that biases can be adjusted retroactively, if 
necessary, using backtracking. There are so many ways of 
implementing dynamic bias adjustment that discovering 
the best method for a RLM is a study unto itself. 

There are several questions of interest in studying inher- 
ited biases in RLMs, assuming that a learning task repre- 
sents the life-span of the RLM. For example, what are 
characteristic language and procedural biases in the RLM? 
If we decompose the problem into two subsystems, one 
subsystem for modeling the learner, and the other sub- 
system for selecting the inherited biases, how should the 
two subsystems be designed? What performance mea- 
sure(s) should be sent from the learning subsystem to the 
bias search subsystem which assigns a the learner it's 
inherited biases? Are there any interactions between the 
procedural and representational biases? This work repre- 
sents some preliminary results in studying combinations of 
biases in a simple RLM without examining the bias search 
subsystem. 
The next section provides background information, intro- 
ducing terminology that frames the question of inductive 
biases in the context of RLMs. This section also discusses 
a way of viewing the strength of a bias in empirical terms 
as information compression. Section 3 gives a quick over- 
view of the CLA; Section 4 describes the particular short- 
est path problem being examined, including an outline of 
the experimental design; Section 5 presents the experi- 
mental results, and Section 6 gives a brief conclusion. 

INDUCTIVE BIASES 

2.1     MEASURING BIAS STRENGTH 

The definition of strength of a language bias given at the 
beginning of the introduction permits us to perform some 
analytic evaluation of the limiting performance of a con- 

cept learner. However, if we automate the search for the 
strongest, correct bias we would like to find some perfor- 
mance measures which would empirically allow us to 
evaluate biasing assumptions. This is especially true if we 
consider the problem of choosing a good procedural bias. 

In RLMs, it is sometimes useful to examine a component 
of language bias called representational bias (Gordon, 
1990; Rendell, 1987; Schlimmer, 1987; Utgoff, 1982, 
1986; Mitchell, 1980). Representational bias defines the 
choice of atoms or primitives in the hypothesis langua- 
ge. Very often, the grammar for expressing hypotheses is 
defined in the paradigm of the RLM. For example, a RLM 
may always generates a decision sequence, or trial hypoth- 
esis, having a specified format. A trial hypothesis is gener- 
ated from the RLM's memory. This memory could be 
expressed as a linear expression, a set of productions, or 
perhaps a state transition table. The choice of terms used 
in the RLM's memory represents a representational bias 
within the learner. If we examine a problem in which the 
best representational bias is known, then we can investi- 
gate which performance measures can be used to measure 
a strong, correct representational bias. 

A major procedural bias within RLMs is the amount of 
change made to the memory at each stage of learning. Sev- 
eral authors (e.g., Sutton, 1989) call this factor the learning 
rate.4 The best setting of this factor cannot usually be 
determined from the problem definition. However, by 
examining various levels of this factor in conjunction with 
different representations, we can test the effect of this bias 
on selected performance measures. 

2.2     INDUCTIVE COMPRESSION 

Generally speaking, inductive learners compress informa- 
tion. Watanabe points out that there are several steps 
involved in the information compression (Watanabe, 
1971). Using different terms than Watanabe's, we can con- 
sider the choice of representation of the language as the 
first compression step, the grammar of the language as the 
next compression step, and finally, the inductive compres- 
sion specified by the procedure as the third compression 
step. 

Representation -> Grammar -> Inductive Procedure 

Watanabe also points out that there are several ways to 
arrive at the same final level of compression. For example, 
all the burden can be placed on initially compressing infor- 
mation into a single concept class, in which case a gram- 
mar is not needed. In this case, all of the effort is applied to 
finding the best representation for the problem. Alterna- 

4 This term learning rate is not used in this paper because many factors 
actually affect the rate of learning. 
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tively, very little compression can be used in developing 
primitives, in which case more burden is placed on devel- 
oping a grammar and applying an inductive inference pro- 
cess. In this second case, the resulting classification rule 
may be more complex (e.g., more terms) than the case 
where more effort is expended in finding a good represen- 
tation. Watanabe speculates that the most desirable situa- 
tion is to have a "well-balanced distribution of information 
compression over different steps" (Watanabe, 1971, pp. 
567). 

22.1  Language Bias 

Notice that the first two steps correspond to defining a lan- 
guage bias. When we select a language bias, we are in 
effect compressing information. Unless the language bias 
is chosen either arbitrarily or from the experience of the 
designer of the learning algorithm, a number of steps are 
required to compress raw data into a language specifica- 
tion. We can define the strength of a language bias in terms 
of the amount information compression that occurs over 
these steps. However, most analyses of algorithms do not 
consider the cost of this phase; that is, an initial language 
bias is often assumed analytically to be a "given." Thus, 
assuming that we can perform compression instanta- 
neously, then we can define the strength of a language bias 
as follows: If a language bias, A, performs more informa- 
tion compression over the same set of data than a lan- 
guage bias, B, then A is a stronger language bias than B. 

This definition is an operational extension of the original 
definition of strength of a language bias which refers to the 
size of the hypothesis space. Given the same raw data, a 
language specification A, results in a smaller hypothesis 
space than some other language specification B, if and 
only if the language A performs more information com- 
pression of the raw data than language B. It follows that 
the bias of A is stronger than the bias of B. 

Notice that the strength of a bias is relative to the original 
data. Suppose that we start with two different sets of raw 
data, set A, and set B which is an elaboration of set A, and 
we arrive at the exact same language specification, L (i.e., 
LA = LB) for both sets. The strengths of the language 
biases are not the same even though the sizes of the 
hypotheses spaces are. The second specification com- 
presses more information relative to the original data set 
B. 

Also notice that this definition ignores the notion of cor- 
rectness, which requires some target concept or problem 
definition. For example, when we compress the raw data 
sets A and B to the same language (as in the last example), 
the compression for B may be greater, but the compression 
may also be incorrect (i.e., too strong). 

2.2.2  Procedural Bias 

To date, little attention has been directed toward the defini- 
tion of the strength of a procedural bias. We extend the 
definition of language bias to define the strength of a pro- 
cedural bias. Since inference procedures usually occur 
over several steps, we can define the strength of a proce- 
dural bias in terms of its rate of information compression: 
If a procedural bias A takes a fewer number of stages to 
perform the same amount of compression as procedural 
bias B, then procedural bias A is stronger than procedural 
bias B. Alternatively: If a procedural bias A compresses 
more information in the same number of steps as proce- 
dural bias B, then procedural bias A is stronger than pro- 
cedural bias B. 

Procedural bias essentially differs from language bias in 
that shifting a language bias usually implies uniform 
changes throughout the learning process. For example, 
dropping a term from the language must be done in all 
hypotheses and all logic leading to those hypotheses. 
Changes in procedural bias are done in the context of effi- 
ciently finding a concept description or a problem solution 
given some language bias constraint. 

2.3     A RLM'S CREDIBILITY SPACE 

A concept learner that receives labelled instances from a 
generator can, in principle, maintain a version space 
(Mitchell, 1977) of hypotheses that are consistent with all 
of the instances seen so far. For example, Mitchell main- 
tains in his Candidate Elimination Algorithm a maximally 
specific set and a maximally general set of hypotheses so 
that not all hypotheses need to be considered explicitly. As 
learning progresses, the version space becomes smaller. 
Haussler points out that one of the problems with Mitch- 
ell's approach is that the storage space for this set of 
hypotheses can still increase exponentially in size. Haus- 
siert analysis shows that it is not necessary for a concept 
learner to maintain an explicit version space at all (Haus- 
sler, 1987). By examining a sufficient number of instances, 
the learner can develop a hypothesis that becomes e-close 
to the target concept with some large probability 1-5. 

One of the important assumptions behind Haussler's anal- 
ysis, however, is that the learner can reject a hypothesis 
because all of the instances are typically labelled as posi- 
tive or negative with certainty. If the learner develops a 
hypothesis that is consistent with all instances seen and it 
turns out that instance information is occasionally incor- 
rect due to mislabelling, then the resulting classification 
rule may effectively over-fit the instance data to include 
noise (Spears and Gordon, 1992). In a learning situation 
where an instance is only labelled as to how probable an 
example it is of the target concept (i.e., a probabilistic 
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learner), maintaining a version space of consistent hypoth- 
eses in some deterministic sense loses its meaning. 

In RLMs, a version space instead consists of a single prob- 
abilistic hypothesis that covers the space of all possible 
hypotheses. Equivalently, we can consider the version 
space to be set of all hypotheses, with each hypothesis 
given a value indicating its degree of its credibility relative 
to other hypotheses. Let us call this probabilistic version 
space a credibility space,5 and for convenience, let us call 
the degree of certainty of a hypothesis its credibility 
value. Credibility values may be decision weights, rule 
strengths, or transition probabilities, depending upon the 
RLM. 
In concept learners, a hypothesis induces a dichotomy of 
the instance space (Haussler, 1988). Haussler defines the 
growth function as the maximum number of dichotomies 
that can be induced in a hypothesis space for a finite num- 
ber of instances. He then shows that because the growth 
function can be related to the number of instances required 
to e-exhaust a version space, it can be used as a measure of 
bias strength in a probabilistic sense (Haussler, 1988, pp. 
191). The analogy to the dichotomies of instances in con- 
cept learning is the number of inputs and outputs available 
to a RLM over a decision sequence. Even though this 
information does give us a bound on the size of the 
hypothesis space, unfortunately, it does not give us a direct 
bound the amount of testing required. Because RLMs 
often use non-binary evaluations, a RLM must consider a 
trial hypothesis repeatedly to gain confidence in its credi- 
bility. It is very unlikely that the RLM can reduce the cred- 
ibility space by testing a hypothesis once; however, testing 
does allow the RLM to reshape the credibility values so 
that retesting of poor hypotheses is minimized. 

2.4     INFORMATION COMPRESSION AND 
ENTROPY 

After each stage of the search, a RLM adjusts its credibil- 
ity values to reflect the outcome of its experience. Depend- 
ing on the policies employed by the RLM, these values are 
increased or decreased so that future decisions should pro- 
vide better overall evaluations. The update policy gener- 
ally indicates the rate of change in the credibility values 
(i.e., amount of change per stage). Depending on this rate, 
the credibility space of the hypotheses becomes organized 
more or less quickly. 

A measure of the amount of compression per stage is the 
change in the entropy. We can compute the entropy at a 

stage using Shannon's entropy measure (Shannon, 1948, 
pp. 393) 

Hslaee = -KjdPt\og(pi), (Eqnl) 

where K is a positive constant, and N is the current size of 
the credibility space at the current stage. Let us assume for 
convenience that K is 1. 
According to Watanabe: "Inductive inference is a process 
such that the distribution of weights (credibilities) 
becomes increasingly concentrated on a decreasing num- 
ber of cases (hypotheses) no matter how widely one dis- 
tributes the weights initially" (Watanabe, 1960, pp. 210). 
Watanabe calls this observed decrease in the entropy the 
inverse H-theorem (Watanabe, 1960,1975). 

The principle of decreasing entropy applies to concept 
learners. Suppose that we start with a hypothesis space 
having cardinality \H\ and there is an equal probability of 
considering each of the hypotheses. If we can eliminate 
hypotheses due to having certain instance information, and 
of there is an equal probability of inspecting the remaining 
hypotheses, then the entropy in the version space after 
eliminating all but N hypotheses is 

// = -£(l/A01og(l/A0 (Eqn2) 
« = i 

This term simply reduces to -logN. The quantity in (Eqn 
2) can be interpreted as the "amount of ignorance" of not 
knowing which of the N hypotheses is correct (Watanabe, 
561, pp. 562). When N = 1, the uncertainty reduces to 
zero. 
In concept learners, the probabilities are not actually the 
same for the hypotheses. Some hypotheses are given more 
weight than others depending on the procedural biases. 
Because many procedural biases only implicitly generate a 
distribution over hypotheses in the version space, comput- 
ing entropy for these cases becomes a challenge. In a RLM 
such as a CLA, it is possible to calculate entropy since 
transition probabilities can be used to compute the credi- 
bility values of trial hypotheses. These credibility values 
can be used as probabilities in (Eqn 1). 

COLLECTIVE LEARNING 
AUTOMATON (CLA) 

5 Both Rendell (Rendell, 1986) and Watanabe (Watanabe, 1960) use sim- 
ilar terminology. Rendell defines a credibility function of hypotheses 
which assesses the credibility or belief of the various competing hypothe- 
ses. 

3.1     OVERVIEW 

The CLA is an iterative paradigm that refines its hypothe- 
ses of the solution at each stage of the search. Within each 
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stage, the automaton communicates with the environment 
for several interactions. For each interaction, the automa- 
ton receives a stimulus input from the environment, selects 
a response output, collects the stimulus-response pair into 
a history, and then transmits the output to the environment. 
This interaction cycle repeats until the automaton gener- 
ates a sequence of stimulus-response interactions called a 
collection. At the end of a stage, the environment trans- 
mits an evaluation to the automaton. The automaton is 
collective because the evaluation of the decision sequence 
does not occur until a collection of stimulus-response pairs 
are obtained.6 

The CLA maintains a State Transition Matrix (STM). 
The STM explicitly provides stimulus-response probabili- 
ties by partitioning the stimulus space into a discrete num- 
ber of compartments called stimulants and the response 
space into a discrete number of compartments called 
respondents. The sum of the probabilities across respon- 
dents for a given stimulant is one. The automaton applies a 
selection function to choose a response to an environmen- 
tal stimulus based on the current contents of the STM. To 
modify the STM, the automaton first develops a compen- 

sation based on an internal transformation of the evalua- 
tion; then the automaton's update function changes the 
STM probabilities using both the compensation and the 
stimulus-response information stored in the history. The 
cycle repeats for several stages until some convergence 
criterion is met Figure 1 summarizes the steps using high- 
lighted pseudocode. 

The simplicity of the CLA makes it potentially amenable 
to analysis. Because the probabilities of a respondent is 
given for each stimulant, it is possible to compute an esti- 
mate of the entropy at each stage. This estimate is called 
the collection entropy, Hc. To calculate the entropy, the 
automaton first computes, on the fly, the product of the 
conditional probabilities of selecting responses for all 
interactions except for the last. For a collection of length /, 
the path probability, ppath is 

(-1 

Ppath =   Y1P" (Eqn3) 
m=\ 

6 Sutton calls problems which restrict reinforcement to occur at the end 
of a sequence "time blinded tasks," because the reinforcement time inter- 
val is very often unknown (Sutton, 1984). 

COLLECTIVE LEARNING AUTOMATON 
BEGIN 

stage = 0 
Initialize STM 
WHILE (convergence criteria not met) DO 
BEGIN 

interaction = 0 
Receive stimulus -^- 
WHILE (not end of stage) DO 
BEGIN 

Select response for stimulus 
using STM 

Collect <stimulus, responso 
pair in History 

Transmit response 

ENVIRONMENT 

Receive stimulus ~^- 

END 
END 

interaction = interaction + 1 
END   
Receive evaluation -M  
Form compensation using evaluation 
Update STM using History and 

Compensation 
stage = stage + 1 

The automaton then uses this probability in computing Hc 

at the final interaction: 

Hc = X 0>„«,*Py) l0S fcW*^ ^qn 4) 

Some other RLMs, such as neural 
networks, implicitly represent the 
relationship between stimulants 
and respondents by using a linear 
expression which maps the 
weighted sum of the stimuli into a 
response. Based on evaluation 
feedback, these learners adjust the 
weights within the expression to 
modify the associated response. 
Still other RLMs use stimulus- 
response rules that permit condi- 
tion parts of rules to intersect. 
This intersection corresponds to 
having overlapping stimulants. 
Many of these RLMs are interest- 
ing paradigms; CLA has the vir- 
tue of having a simple automaton 
underpinning in which the proba- 
bilities of input-output associa- 
tions are explicitly enumerated. 
The results of this study may be 
useful in examining other RLMs. 

Transmit response 

Receive stimulus 
Transmit response 

Update Environment 
Transmit evaluation 

Figure 1: A Standard Collective Learning Automaton 
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3.2     LEARNING BIASES IN THE CLA 
Now let us briefly consider examples of biases within the 
CLA. A example of a representational bias in the automa- 
ton is the definition of the states in the STM (i.e., the stim- 
ulants and the respondents). Expressing a hypothesis as a 
decision sequence is an example of a grammar bias. Thus, 
the language of a trial hypothesis consists of a sequence of 
stimulant-respondent ordered pairs. There are several 
examples of procedural bias. The formulation of the com- 
pensation and update functions reflect inductive proce- 
dural biases. Deductive procedural biases are reflected in 
the selection function. For example, the automaton may 
make each decision based only on current state informa- 
tion without looking behind at previous information (i.e., 
the automaton may be first-order). The selection function 
governing how the automaton chooses a decision sequence 
(i.e., a hypothesis) from the STM may consider all hypoth- 
eses or only a subset of hypotheses whose probabilities lie 
above a threshold. 

EXPERIMENTAL APPROACH 

4.1     AN EXAMPLE PROBLEM 

For purposes of illustration, let us examine a small shortest 
path problem. Figure 2 below summarizes the environ- 
ment's complete knowledge of the problem. The stimu- 
lants that the automaton can receive are the colors within 
the ellipses. The lines shaded in grey show the optimal 
path. The respondents are X, Y, and Z; the time of travel 
associated with each response is placed in parentheses. 

Notice that it is possible for more than one respondent to 
lead to the same next stimulant. For example, for the stim- 
ulant called VIOLET, all three of the respondents, X, Y, 
and Z, lead to the stimulant called RED. The time trav- 
elled depends on the actual respondent selected. Also 

notice that in this problem, the shortest path in terms of 
time is the longest route through the network in terms of 
the number of decisions required (i.e., five decisions). 

It is interesting to note that there is an inherent hypothesis 
procedural bias in the automaton because it selects 
responses on a node-by-node basis. Even when the proba- 
bilities of selecting different responses are initially the 
same at each of the nodes, the probabilities of selecting the 
possible action sequences are different. There are more 
paths leading to the RED stimulus if the initial response is 
X (7 paths) than if the initial response is either Y (2 paths) 
or Z (4 paths), so that the paths starting with an X response 
are initially explored less than the paths starting with a Y 
or Z responses. This bias is compounded if there are near- 
optimal solutions in the more easily explored parts of the 
search space. In Figure 2 the response sequence Y -> Y -> 
Z gives a 6 minute trip that is only one less than the opti- 
mal response sequence X -> Y -> X -> Y -> Z giving a 5 
minute trip. So despite the small size of the graph, the 
problem is not trivial. It is easy for a RLM receiving sum- 
mary evaluations to get trapped in a local optimum. 

Let us now assume that the automaton does not have 
respondents X, Y, and Z available to it; rather, suppose it 
has an integer range of responses from 4 to 0. In other 
words, the automaton has a language based on integer val- 
ues instead of letter symbols. If the automaton uses a parti- 
tion consisting of three intervals (e.g., [4, 2] [1] [0]), then 
each interval represents an equivalence class where the 
range of responses are considered to be the same. For 
example, if a respondent is the range [4,2], then the 
responses {4, 3, and 2} are equivalent. In general, there 
are 2" ways of partitioning the range [n, 0] into equiva- 
lence classes. 

Z(3) 

Figure 2: Shortest Path Problem 
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[4,0] 

[4] [3,0] 

[4,2] [1,0] 

[4,3] [2,1 

Target 

Partition 

[4] [3,2] [1,0] 

[4] [3] [2,1] [0] 

[4, 3] [2] [1] [0] 

[4] [3] [2] [1] [0] 

Figure 3: Lattice Represents Partitions over the Range 4 to 0 

4.2     EXAMPLE OF REPRESENTATIONAL BIAS 

In general, the best mapping between the environment's 
language and the automaton's is not known. If we consider 
the automaton's specific partition of the range to be an 
inherited characteristic, then a partition can be thought of 
as an intrinsic representational bias in the automaton's sen- 
sors, much in the same vein that a bat's sonar-like sensors 
vary in sensitivity depending on the range. This represen- 
tational bias determines the structure of the automaton's 
STM. The partition given to the automaton remains the 
same during its life-span (while it solves the shortest path 
problem). The choice of partition is one of the experi- 
mental design parameters. 

Figure 3 depicts the representation lattice organized with 
the most general representation at the top, where all 
responses over the range from 4 to 0 are placed in the 
same equivalence class (i.e., {4,3,2,1,0} = [4,0]), to the 
most specific one at the bottom, where each response is 
considered to be unique (i.e., [4] [3] [2] [1] [0]). Thus, the 
strength of this representational bias can itself be framed 
as a search space covering the most general to the most 
specific representation. As we move down the lattice, each 

line represents an additional splitting of the range. When 
the environment (or the problem) maps the respondents X, 
Y, and Z in the graph above into one of the possible parti- 
tions, then that partition becomes the target representation, 
or more specifically, the Target Partition. For example, if 
X maps to [4], Y maps to [3,2], and Z maps to [1,0], then 
the target partition is [4] [3, 2] [1,0]. An automaton that 
happens to inherit the target partition has the strongest, 
correct representational bias. Other representations, how- 
ever, may still permit the CLA to solve the shortest path 
problem. Those partitions are also correct representations. 
Notice that [4] [3] [2,1] [0] is a correct partition because 
there is a unambiguous mapping for each of the environ- 
ment's symbols: X maps to [4], Y maps to [3], and Z maps 
to [0]. The range [2, 1] is not useful to the automaton 
because the range is ambiguous: the target partition maps 
Y to [2] and Z to [1]. Combining 2 and 1 together does not 
help the CLA, but the combination does not hurt the 
automaton either because there are unambiguous map- 
pings for the symbols Y and Z. In general, the inherited 
partitions which allow the automaton to only converge to 
sub-optimal solutions, or to not converge at all, are incor- 
rect representations. 
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43     EXAMPLE OF PROCEDURAL BIAS 

At the end of each stage, the environment informs the 
automaton of the duration of its selected path through the 
network. The automaton's compensation function, which 
is defined internally to the automaton, transforms the envi- 
ronment's score, £, using an exponential function so that 
shorter durations receive a large reward and longer dura- 
tions receive very little reward? Thus the initial scaling of 
the reward is 

/(£) =expkx\ (Eqn5) 

where k is some small constant. 

The collection entropy is also included in the compensa- 
tion function. The collection entropy acts as a progressive 
reinforcement mechanism that effective rewards the 
automaton more during early learning experiences and less 
later on as information at decision points becomes more 
certain. As a result, the use of the collection entropy forces 
the automaton to examine more difficult-to-reach, yet 
unexplored, parts of the search space, even though a near- 
optimal solution may be easier to locate. Scott and Marko- 
vitch's DIDO system also use an entropy measure to 
decide what spaces to investigate (Scott and Markovitch, 
1989). However, the CLA's measure incorporates a trans- 
formation of the environment's evaluation in order to max- 
imize the reward of an experience. 
Given a compensation factor, A, for adjusting the rate of 
change of the STM probabilities, the compensation, c, is 

c= (A) (1.0-//,)/(£). (Eqn6) 

The compensation factor is the procedural bias parameter 
modified in the experiments. All probabilities along the 
path (decision sequence) are increased in proportion to 
their current values during the update of the STM. In the 
experiment discussed in the results section, different levels 
of the compensation factor are examined in order to study 
the effect of applying different strengths of a procedural 
bias. By increasing or decreasing A, the probabilities in 
the STM become organized more or less quickly. These 
transitional probabilities in turn affect the organization of 
the credibility space of the hypotheses, where a trial 
hypothesis is considered to be a particular sequence of 
stimulus-response pairs. With a stronger procedural bias, 
the entropy of the credibility space decreases faster. How- 
ever, too fast a rate of decrease can cause the procedural 
bias to be so strong that it is incorrect In other words, too 
strong a a compensation factor may lead to a sub-optimal 
solution. 

7 This compensation function is similar to a reward-inaction policy, 
where desirable behaviors are rewarded and non-desirable behaviors 
receive no reward instead of being penalized. 

4.4     DESIGN 
In this study, we examine the 16 partitions discussed 
above in combination with 50 levels of compensation fac- 
tor, ranging from 0.01 to 0.50. Each combination of parti- 
tion and compensation factor level is repeated 20 times in 
order to obtain average performance values. 

Two criteria must be satisfied to reach convergence: (1) 
the fraction of runs over the last 200 stages having the 
optimal solution must be greater than or equal to 0.99, and 
(2) the difference in the collection entropy between stages 
over the 200 stages is less than some small value epsilon 
(e.g., epsilon = 0.0005). 
After achieving convergence, statistics are obtained over a 
window of an additional 50 stages. Two performance mea- 
surements are taken: (1) the number of stages required to 
reach convergence (i.e., the last stage of the window), and 
(2) the time-average of the exponentially transformed 
score /(£) (see Eqn 5). The automaton is permitted to run 
up to 15,000 stages when there is no convergence. 

RESULTS 

5.1     MEASURING THE CLA'S OVERALL 
PERFORMANCE (UTILITY) 

Figure 4 illustrates the change in the collection entropy 
from stage to stage for three runs using selected levels of 
compensation factor: 0.05, 0.14, and 0.50. The collection 
entropy fluctuates as the automaton tests different trial 
hypotheses at each sage. Eventually, as the probability of 
selecting one solution becomes more certain, the entropy 
dramatically decreases and the fluctuations lessen. (If 
there were more than one solution, the change in the fluc- 
tuation would remain constant). As the level of compensa- 
tion becomes larger, the number of stages required to 
reduce the entropy becomes smaller. 

The top graph in Figure 5 summarizes the essence of the 
information in Figure 4. Figure 5 shows the number of 
stages required for the five correct partitions (i.e., [4] [3,2] 
[1,0]; [4] [3] [2,1] [0]; [4,3] [2] [1, 0]; [4] [3] [2] [1,0], 
and [4] [3] [2] [1] [0]) for each level of compensation fac- 
tor over an average of 20 runs for each combination. The 
target partition's line is dotted; each point has a vertical 
line indicating plus and minus one standard deviation 
about the mean. An analysis of variance and accompany- 
ing t-tests indicate that there is no significant difference 
among the correct representations most of the time. 

The bottom graph in Figure 5 shows the convergence val- 
ues of the different partitions for each level of compensa- 
tion factor. These convergence values have been 
normalized so that the best obtainable performance is one, 
and the worst obtainable one is zero. The strongest, incor- 

Biases in Inductive Learning Workshop, ML-92, July 4,1992 



COLLECTION ENTROPY OVER THE STAGES 

ENTROPY 

1000 
STAGE NUMBER 

For Target Partition Using Compensation Factor = 0.05 

ENTROPY 

1000 500 
STAGE NUMBER 

For Target Partition Using Compensation Factor = 0.14 

ENTROPY 

i 1 1 r 
100 200 300 400 

STAGE NUMBER 
For Target Partition Using Compensation Factor = 0.50 

Figure 4: Example Runs Showing Change in Collection Entropy Over Stages 
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STAGES FOR CONVERGENCE 
Correct Partitions Only 

0.05     0.1 0.15     0.2      0.25     0.3      0.35 
COMPENSATION FACTOR 

Std Dev for Target Partition Indicated 

0.4 

CONVERGENCE 
VALUES 

CONVERGENCE VALUES 
All Partitions 

0.05     0.1 
i r 

0.15     0.2     0.25     0.3     0.35 
COMPENSATION FACTOR 

Std Dev for Target Partition Indicated 

0.4     0.45 

Figure 5: Stages for Convergence and Convergence Values at Different Levels of Compensation Factor 
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rect partition, [4, 0], lies along the compensation factor 
axis at a zero normalized convergence value. The top five 
lines correspond to the correct representations; the remain- 
ing, more spread out, lines are incorrect partitions. The 
dotted line indicates the target partition; with the vertical 
lines indicate plus and minus one standard deviation about 
each plotted point. An analysis of variance and accompa- 
nying t-tests indicate that there are no significant differ- 
ences among the correct representations. Notice that the 
overall convergence values decrease for the correct parti- 
tions with a high level of compensation factor (e.g., 0.50). 
Even though it takes fewer stages to reach convergence 
(around 500), the procedural bias is so strong that some of 
the runs are converging suboptimally, thus bringing down 
the average convergence values. 

6      CONCLUSION 

Normally, we would expect that in the top graph of Figure 
5 the correct representations would vary in their number of 
stages for convergence, depending on the strength of the 
representation. For example, the target partition, being the 
strongest, correct partition, should have a slightly faster 
rate of convergence that is significant when compared to 
the other correct partitions. In this problem, there is not a 
significant difference between the representations most of 
the time. On the other hand, we would not expect the con- 
vergence values in the bottom graph of Figure 5 to be sig- 
nificantly different for the correct partitions, since by 
definition of being correct, all of these partitions should 
allow the automaton to convergence to the optimal solu- 
tion. 
In the bottom graph of Figure 5, the incorrect partitions, 
which generally converge to sixty percent or less of the 
optimal convergence value, also exhibit tremendous vari- 
ance in their values (this variance is not displayed in the 
graph). As a result, it is difficult to discriminate among the 
incorrect partitions, as we might expect to do, based on 
their normalized convergence values. Incorrect partitions 
rarely permit the automaton to converge to even a sub- 
optimal solution. For incorrect partitions, the convergence 
values are primarily the result of averaging the last fifty 
stages over 15,000 stage runs. 

In summary, correct partitions could not be discriminated 
on the basis of the number of stages required for conver- 
gence. Neither could incorrect partitions be discriminated 
based on their convergence values. One of the possible 
reasons for this result is that the example problem uses dif- 
ferent symbols for the same paths through the network 
(i.e., word similes). The problem does not show the effect 
of combining different paths giving the same performance 
into groups. It may be that the use of similes does not 
degrade performance. Future research needs to address 

different senses of what is meant by combining terms into 
higher level ones. 
Another problem that needs to be explored is the definition 
of convergence within the CLA. It may be that the current 
definition of convergence inherently yields results having 
high variance. A different definition of convergence may 
permit the automaton to consistently converge by same 
number of stages (or close to the same) when using the 
same combination of parameters. 

This paper reviews the ideas of inductive learning biases 
in the context of an example RLM called a CLA. For pur- 
poses of illustration, the paper uses simple shortest path 
problem. In particular, the experimental work examines 
the performance of the automaton for various combina- 
tions of strengths in representational and procedural bias. 
The representational bias is the partitioning of the 
response range used within the STM of the CLA; the pro- 
cedural bias is the compensation factor which determines 
the amount of increase in the probabilities within the 
STM. The work also introduces the use of entropy as a 
measure of bias strength, with particular emphasis on the 
strength of the procedural bias. 

The work demonstrates some of the problem of discover- 
ing empirical measures of bias strength in an example 
RLM. Other tests cases need to be explored in order to dis- 
cover when stronger representations can be ascertained 
empirically through performance measures. 
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